Advanced Methods for Estimating Uncertainties in National Greenhouse Gas Emission Inventories – the Case of Finland

Suvi Monni VTT Processes 30 April 2003

Structure of the presentation

- Greenhouse gas emissions in Finland
 - national circumstances
- General on uncertainty estimates
- ▼ Input parameter uncertainties
- Combining uncertainties
- Results
- Conclusions

Finland

- Northerly located country
 - a quarter of the country lies north of the Arctic Circle
- Cold climate
 - annual mean temperature
 6°C in south, less in north
 - 1/5 of final energy is used for space heating
- ▼ 2/3 of primary energy comes from imported sources

Primary energy production in Finland 1975-1999

34 TWh

Electricity production in Nordic countries in 2000

Nord@ Availability of 18 % hydropower depends on 0,5 % 19 % 61 % rainfall rates. 21 % 47 % 32 % 6 % 1,6 % 99% 67 TWh **394 TWh 55** % 143 TWh 39 % Hydro Wind and geothermal 12 % Nuclear Condensing & CHP

142 TWh

Lots of energy used to produce export products (metals, pulp and paper)

Industry uses half of the final energy in Finland

N₂O from Energy Sector: Fluidised Bed Combustion

Advantages of fluidised bed combustion:

- •fuel flexibility (wet, lowgrade fuels, different particle size etc)
- •in-process capture of SOx
- •low NOx emissions

Disadvantages:

•high N₂O emissions

Circulating fluidised-bed boiler plant

Peat Fuel Use

- ▼ 6% of Primary Energy in 2001
- ▼ Emissions from peat combustion (CO₂, CH₄, N₂O)
- ▼ Peat production area around 55 000 ha
 - emissions: CO₂ and CH₄
- Arable peatland area around 150 000 ha
 - emissions: CO₂
- Closely related to Land Use -sector

Picture: Heikki Kokkonen

Greenhouse gas emissions from Finland in 2000

Uncertainty estimates (1)

- Required for UNFCCC and Kyoto Protocol
- Essential for emission trading and other Kyoto mechanisms
- Give information on future research priorities
 - emission inventory improvements
- ▼ IPCC Good Practice gives two different "tiers" for combining uncertainties
 - Tier 1: error propagation equations (normal distributions, symmetrical, uncertainty cannot exceed 100%, handling of correlations problematic)
 - Tier 2: Monte Carlo simulation (distributions can have all possible shapes and widths, flexible handling of correlations)
 - used in this study

Uncertainty estimates (2)

- Uncertainties due to
 - measurement errors
 - natural variability of emission sources
 - bias in expert judgement
- Basis of uncertainty estimates
 - measurement data
 - domestic and international literature
 - expert judgement
 - IPCC default uncertainties

Uncertainty estimates (3)

- ▼ Fuel combustion often accurately known (IPCC 2000)
 - activity data uncertainty ±1-5% in large sources
 - emission factor uncertainty
 - CO_2 : < ± 5%
 - CH₄: ± 50-150%
 - N₂O: order of magnitude
- Uncertainty in industrial processes depends of plant-specific data and process conditions
- Agriculture and Waste sectors contain many highly uncertain emission sources

Input Parameter Uncertainties, Case 1: N₂O Emissions from Cars with Catalytic Converters

Input Parameter Uncertainties, Case 2: Solid Waste Disposal on Land

- Emissions from solid waste disposal on land are calculated with a First Order Decay Method (FOD)
 - takes the dynamic behaviour of waste degradation into account
 - emissions from waste disposed in landfills since year 1900 are calculated
- Uncertainties of each parameter are estimated
 - uncertainties in historical activity data are large (the waste amount in the beginning of 1900 was very small)
 - suitability of parameters in Finnish conditions (e.g. freezing and melting of land) has to be taken into account in uncertainty estimates
- ▼ Resulting uncertainty around ±30%

Monte Carlo Simulation

- ▼ Input parameters of emission calculation model are replaced with probability density functions (e.g. normal or lognormal distributions)
- Total uncertainty is obtained taking random numbers from each input distribution several thousands of times

Uncertainties by gas

Gas	Uncertainty
CO_2	-4+6%
CH ₄	-19+20%
N_2O	-33+40%
HFCs, PFCs and SF ₆	-53+32%

Uncertainties by sector

Sector	IPCC code	Uncertainty in 2001 (%)
Fuel Combustion	1A	±3%
Fugitive emissions from fuels	1B	-59+106%
Industry	2	-27+43%
Agriculture	4	-37+47%
Waste	6	-28+30%
Total		-5+6%

Key sources

Key sources identified with the Tier 2 method of IPCC Good Practice Guidance

5 most important key sources in 2001

Source category number	Gas	Key Sources
1B	CO ₂	Arable peatlands
4D	N ₂ O	Agricultural soils
1B	CO ₂	Peat production areas
1A4	CO ₂	Other Sectors (commercial, institutional, residential, agriculture, forestry, fisheries,): Liquid Fuels
2B2	N ₂ O	Nitric Acid Production

Conclusions

- ▼ Total uncertainty in Finland is rather low (-5...+6%)
 - due to large share of CO₂ emissions from fossil fuel combustion, which are accurately known
- ▼ CO₂ emissions are accurately known, but other gases contain higher uncertainties
- ▼ CO₂ emissions from peat production and N₂O emissions from agricultural soils dominate the uncertainty
 - the reduction of these uncertainties would need lots of research both internationally and in Finland

